
July 1990
UILU-ENG-90-2224

CSG-126

COORDINATED SCIENCE LABORATORY
College of Engineering

/

DYNAMIC
LOAD-SHARING
USING PREDICTED
PROCESS RESOURCE
REQUIREMENTS

Kumar K. Goswami

Ravishankar K. Iyer

(Ill inoi_. _jniv.'_ _:'_,,.,, CqLL OSA

Nqii- eLq', 3 J

uncl as

C31_I 02'_7_61

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

II

imJ

,,,,ull

I

REPORT DOCUMENTATION PAGE

l a. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2224

_. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab

University of I_iqgls
k ADDRESS (C/ty, Stare, _d Z;pCodej

ii01 W. Springfield Ave.

Urbana, IL 61801

II_ NAME OF FUNDING/SPONSORING
ORGANIZATION

NASA

ADDRESS (C/_, State. end ZIP Code)

Langley Research Center

Hampton, VA 23665

CSG 126

6b. OFFICE SYMBOL
(If ap_k:able)

N/A

Sb. OFFICE SYMBOL
(If ilppltcabte)

ro_ xap,o_
OM8 NO. 07040 !88

lb. RESTRICTIVE MARKINGS

None

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

NASA
I

7b. ADDRESS (Ca),, State, ,rid ZIP C4,4e)

Langley Research Center
Hampton, VA 23665

9. PROCUREMENT INSTRUMENT IDENTIFICATION NU;_gER

NASA NAG 1-613

10. SOURCE OF FUNDING NUMBERS

PROGa_ua PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
b.CCESSION NO.

11. TITLE (Indude .fwl,(ur/_ O_s/flQt/o_

"Dynamic Load-Sharing using Predicted Process Resource Requirements"

12.PE_SON*LAumo.(s)
Kumar K. Goswami and Ravishankar K. I_,er

'13a. TYPE OF REPORT 13b. TIME COVERED

Technical FROM TO .

16. SUPlN.EMENTARY NOTATION

14. DATE OF REPORT (Year, &_,,',',',',',',',','_Day)

1990, June 15

IS. p.a4;E COUNT

23

17.

FIELD

I

19. ABSTRACt

COSATI CODES 18. SUBJECT TERMS (Continue on ntweme if i,e_.e,t_l_ ar_J &_,,,_,_; by _ ;'.g,--._,,-)

GROU_ SUe_SROUP distributed systems, load sharing, statistical clustering,

resource prediction, dynamic scheduling and trace-driven

• 5i_ 'jlatinn
(Continue on Imve_ if mmm_l dmd i_nti_, b_ blo(t ,,embed

In the paper, heuristics which use predictedprocesa resource requirements to make scheduling decisions

are proposed. Four heuristics are presented. The first two, MINQ and SMPL, employ centraiized

scheduling and the remaining two, DMINQ and FDMINQ, use distributed scheduling. These heuristics

are first compared against random scheduling and then against two conventional heuristics, CEN,FEX

and DIS'FED, which schedule processes solely based on system state information. Results based on
trace-driven simulations show that the proposed centralized heuristics offer significantly improved mean

response times and, they require fewer status update messages. In experiments using the same status

update rates, SMPL response times were, on the average, 22% lower than those for CENTEX and, MINQ

response times were, on the average, 18% lower. The simulations also showed that MINQ and SMPL

can perform as well as, or better thaa, CENTEX while using up to 70% fewer status update messages.

The use of fewer ,_*.atus update messages imposes less overhead on the system. The use of prediction for

distributed scheduling produced similar results. When prediction was used to filter small processes and

execute them locally a 50% improvement in response tzmes was obtained.

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED [] SAME AS RPT.

22_. NAME OF RESPONSIBLE INDIVIDUAL

[] DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22b. TELEPHONE (include Area Code) 226. OFFICE SYMBOL

DO Form 1473, JUN Eti Previous editions _e o/_olete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Dynamic Load-Sharing using Predicted Process

Resource Requirements

Kumer K. Goswami and Ravishankar K. Iyer

Center for Reliable and High Performance Computing

Coordinated Science Laboratory

University of Illinois et Urbane-Champaign

1101 West Springfield Avenue

Urbane, Illinois 61801 USA

June 15, 1990

Abstract

In the paper, heuristics which use predicted process resource requirements to make scheduling decisions

are proposed. Four heuristics are presented. The first two, MINQ and SMPL, employ centralized

scheduling and the remaining two, DMINQ and FDMINQ, use distributed scheduling. These heuristics

are first compared against random scheduling and then against two conventional heuristics, CENTEX

and DISTED, which schedule processes solely based on system state information. Results based on

trace-driven simulations show that the proposed centralized heuristics offer significantly improved mean

response times and, they require fewer status update messages. In experiments using the same status

update rates, SMPL response times were, on the average, 22% lower than those for CENTEX and, MINQ

response times were, on the average, 18% lower. The simulations also showed that MINQ and SMPL

can perform as well as, or better than, CENTEX while using up to 70% fewer status update messages.

The use of fewer status update messages imposes less overhead on the system. The use of prediction for

distributed scheduling produced similar results. When prediction was used to filter small processes and

execute them locally a 50% improvement in response times was obtained.

Index Terms-Distributed systems, load sharing, statistical clustering, resource prediction, dynamic schedul-

ing and trace-driven simulation.

Page 1

1. Introduction

Dynamic load sharing heuristics have been studied extensively in the past. Most studies

assume that the resource requirements of processes are not known apriori [Casavant 88]. How-

ever, better load sharing should be possible if the scheduler uses information on process

resource requirements to make scheduling decisions. The results in [Devarakonda 89] show that

it is possible to predict the CPU, memory, and I/O requirements of a process using a statistical

pattern-recognition technique. This paper is concerned with the use of this prediction methodol-

ogy to make scheduling decisions and to reduce the overhead of load sharing.

Four heuristics are proposed which use predicted process resource requirements to

influence scheduling decisions. The first two (MINQ and SMPL) employ centralized scheduling

and the remaining two (DMINQ and FDMINQ) use distributed scheduling. MINQ uses the

predicted process resource requirements to determine the load (as measured by the CPU queue

length) on the processors. The incoming processes are then directed to the processor with the

least load. SMPL uses predicted process resource requirements to estimate the response time

that a process will receive at each processor. The process is then sent to the processor offering

the lowest estimated response time. DMINQ is simply a distributed version of the MINQ heuris-

tic. FDMINQ employs a prediction-based filtering mechanism to identify and execute small

processes locally.

The proposed heuristics which use prediction are first compared against random schedul-

ing and then against two conventional heuristics, CENTEX and DISTED, which schedule

processes based solely on system state information [Zhou 86]. CENTEX has been shown,

through trace-driven simulations, to be a very effective centralized heuristic and DISTED is a

distributed version of CENTEX.

Page 2

Results based on trace-driven simulations show that the proposed centralized heuristics

offer improved mean response times and perform well while using fewer status update mes-

sages. The simulations reveal that MINQ and SMPL perform as weU as, or better than, CEN-

TEX while using up to 70% fewer status update messages. In experiments using an equal

number of status update messages, SMPL response times were 22% lower than those produced

by CENTEX and, MINQ response times were 18% lower.

The use of prediction for distributed scheduling produced similar results. Under moderate

to high loads, the response times for DMINQ were 18% lower than those of DIS'rED. When

prediction was used for filtering small processes and executing them locally (FDMINQ) a

significant reduction in response times was obtained; the mean response time was up to 50%

lower than that produced by DISTED.

The following section discusses recent related work in this area and describes the tech-

nique used to predict process resource requirements. Section 3 presents the four proposed

scheduling policies, MINQ, SMPL, DMINQ and FDMINQ. Sections 4 and 5 present the simu-

lation model and the results of the trace-driven simulations, respectively. Finally, Section 6

summarizes the important findings and suggests directions for future research.

2. Background

The area of dynamic load balancing has been widely investigated ([Eager 86], [Hwang

82], [Krueger 84], [Leland 86], [Livny 82], [Stankovic 85], [Zhou86]). Studies that have a bear-

ing with the research presented in this paper include [Livny 82] which presents a comprehensive

study of several load-sharing heuristics and demonstrates that even with communication delays

and processing overheads, load-sharing can improve the response time of a system. In [Stanko-

vic 85] stability issues in load-sharing are discussed and heuristics that use a stochastic learning

Page 3

automata to reduce instability are described. In [Barak 85] results of an actual implementation

are described and the use of average rather than the instantaneous load measurements is dis-

cussed. In [Eager 86] an analytical study of three simple load-sharing policies is presented; the

authors demonstrate that simple policies provide a significant improvement in response time.

More complex policies are shown to provide only a marginal improvement over these simpler

policies.

Research most closely related to that presented in this paper is that of [Zhou 86] and

[Leland 86]. In [Zhou 86] a centralized, dynamic load-sharing policy, CENTEX, and a distri-

buted policy, DISTED, are proposed. CENTEX uses the average CPU queue length to indicate

the processor load. It directs incoming processes to the processor with the shortest queue

length. Periodically, each processor sends an update message, consisting of its current CPU

queue length, to the central scheduler. Using simulations, based on real trace data, the author

shows that CENTEX produces lower overaU mean response times than DISTED, a distributed

version of CENTEX. Zhou also demonstrates that CENTEX performs as well, or better than,

the three simple distributed policies described in [Eager 86].

Leland and Ott [Leland 86] analyzed 9.5 million Unix processes and found that the resi-

dual CPU time needed by a process is linearly related to its age,(i.e., The authors subsequently

develop a spiral assignment scheme which schedules processes based on their age. Several

heuristics based on this spiral assignment idea are developed and analyzed via trace-driven

simulations.

The use of predicted process resource requirements to influence scheduling has not been

fully explored in the literature. In systems using a round robin CPU scheduling policy, selection

of the best processor depends on i) the number of processes in the processor, ii) the resource

Page 4

requirements

scheduled.

technique.

of these processes and, iii) the resource requirement of the process being

The first is easily obtained and the other two can be estimated by using a prediction

It can be argued that Leland and Ott implicitly use prediction since process age is

used to estimate ("predict") its residual CPU requirement. The heuristics proposed in this study

use a more direct approach.

The prediction method described in [Devarakonda 89] uses a statistical pattern-

recognition-based approach to predict the CPU time, the file IIO and the memory usage of a

process at the beginning of its life, given the identity of the program being executed 1. The

method was based on an analysis of over 65,000 UNIX processes. Initially, a statistical cluster-

ing algorithm is used to identify high-density regions of process resource usage. These regions

(defined as states) are used to build a state-transition model to characterize the resource usage of

the past executions of a program. The prediction scheme uses the resource usage of a program's

last execution and the program's state-transition model to estimate the resource requirements for

its next execution. In experiments using this approach, the coefficient of correlation between the

predicted and actual CPU requirements of processes analyzed was found to be 0.84 out of 1.0.

All the heuristics proposed in this study use Devarakonda's prediction scheme.

3.0 The Proposed Load Sharing Heuristics

This section proposes the four dynamic load-sharing heuristics that use predicted process

resource requirements to make scheduling decisions. The first two (MINQ and SMPL) are cen-

tralized heuristics, and the remaining two (DMINQ and FDMINQ) are distributed versions of

MINQ. All four heuristics assume that processes are logically independent of one another and

t A process isan executionot instanceof a program.

Page 5

are irrevocably assigned to a processor (i.e., once assigned a process is never migrated to

another processor).

The framework for the centralized load-sharing heuristics is illustrated in Figure 1. The

box containing the predictor and the scheduler is referred to as the central scheduler. When a

process arrives at the central scheduler, its.identification is sent to the predictor which predicts

the resource requirements of the process. These predicted values are then fed to the scheduler

which, based on the specifics of the load-sharing policy, identifies the processor that wiU house

the process. When a process completes execution, its actual resource usage is stored by the pro-

cessor in a buffer. Periodically, each processor sends a status update message, consisting of the

contents of tl'_is buffer, to the central scheduler which in turn uses this information to update the

appropriate state transition model.

processes

& &__N_ rOcess arrives status update

mess_tge

[Predictor __

I
rocess scheduled

Figure 1. Framework of centralized load-sharing with prediction

Page 6

Figure 2 depicts the framework for the distributed heuristics. The approach is similar to

centralized scheduling, except that now each node has its own scheduler. When a process arrives

at a node it is first sent to the predictor to estimate its resource requirements. Next, the

scheduler is invoked to select the processor that will house the process. Periodically each pro-

cessor sends a status update message to all the other processors.

3.1 The MINQ Load-Sharing Heuristic

The MINQ scheduling policy is the simplest of the two centralized heuristics. For each

processor, i, the scheduler maintains a queue containing the predicted CPU and I/O require-

ments of every process executing in the processor. When a process, X, arrives, the scheduler

estimates the CPU load on each processor and sends the process to the processor with the

_node 1

scheduler I

[predictor [

_(processes

k,,,,, arriving

%o

node 2

[scheduler]

[1

o%

o o o

node n

scheduler

predictor

processesarriving

%o
Figure 2. Framework of distributed load-sharing with prediction

Page7

lowest estimated load. The sequence of steps taken by the scheduler is outlined below.

1. The estimated average CPU load at each processor i is computed as follows:

.CPU_REQL
CPU_LOAD_ = [_ CruKz_+,tuKg{di

where:

Ni = the number of processes in processor i

IOREQj is the predicted I/O requirement

of process j in units of time

CPUREQj is the predicted CPU requirement

of process j in units of time

Note that CPU LOAD is an estimate of the CPU queue length.

2. The process identification is fed to the predictor to obtain the predicted CPU and

I/O requirement.

3. The process is sent to processor k with the smallest CPU_LOAD value.

4. An entry containing the predicted CPU and I/O requirement of process X is

added to processor k's queue.

Recall that at periodic intervals each processor sends a status update message consisting of

the actual resources used by its processes to the central scheduler. Upon receiving a status

update message, the central scheduler performs the following processing steps for each process

in the message.

,

.

The process identification and the actual CPU and I/O usage figures are fed to the

predictor in order to update the state transition diagram for that program.

The appropriate process entry is deleted from the queue of the processor which

sent the message.

3.2 The SMPL Load-Sharing Heuristic

When scheduling a process, SMPL takes the number of processes in a processor, the CPU

requirement of these processes and the CPU requirement of the process being scheduled, into

Page 8

account. Like the MINQ heuristic, SMPL maintains a queue for each processor. As processes

arrive and are scheduled, entries are placed in the appropriate queue and as processes are com-

pleted, their entries are deleted from the queues. The fundamental difference between MINQ and

SMPL lies in the policy used to select the processor with the least load. Recall that MINQ sim-

ply picks the processor with the smallest estimated CPU load. However, when round robin

CPU scheduling is used, selecting the processor with the smallest CPU load may not necessarily

guarantee the best response time for the process. When a process, X, is to be scheduled, the

SMPL approach estimates the response time that the process will receive at each processor and

selects the processor offering the lowest estimated response time. For each processor, i, the

scheduler computes the response time in two steps. First, it sums the predicted CPU require-

ment of all processes smaller than process X. Next, for each of the remaining processes, an

amount equal to the CPU requirement of process X is added to this sum. This final value is the

estimated response time that X will receive at processor i. The detailed steps performed by

SMPL are outlined below.

o

.

The predicted resource requirements of process X (CPU_REQp,oc,_x,

IO_REQp,o_,_,x) are determined via the prediction mechanism.

Given a round robin CPU scheduling discipline, the estimated response time, ri,

that process X will receive at each processor, i, is computed:

rl = _1 x CPU_REQj + (1-1) x CPU_REQp,oc_x

1 if CPU REQ; < CPU REQ.m_,,aI = otherwise

where:

Ni = the number of processes in processor i

CPU_REQ i = the amount of CPU required

by process j

3. The processor with the lowest ri value is selected to house process X.

4. Process X is added to the appropriate processor's queue.

Page 9

As in the MINQ heuristic, the central scheduler periodically receives status update mes-

sages containing the actual I/O and CPU time used by the processes that have been completed.

The SMPL load-sharing heuristic performs the same status update processing as MINQ.

3.3 The DMINQ Load-Sharing Heuristic

In DMINQ (a distributed version of MINQ) each processor has a local scheduler which main-

tains a separate queue for each processor in the system. Queue i contains the predicted CPU

and I/O requirements of every process that the local scheduler has sent to processor i. When a

process arrives at a processor, if the load on the processor is less than a pre-specified threshold

T, the process is housed in the same processor 2. Otherwise, the local scheduler estimates the

CPU load on every processor in the system via the information in its queues, and assigns the

process to what it believes to be the least loaded processor. The scheduler then adds the process

to its queue for the selected processor.

Periodically, each processor broadcasts a status update message, containing a list of all the

processes that have been completed since the last status message was broadcast. The local

schedulers use this message to refresh their global view of the system.

3.4 The FDMINQ Load-Sharing Heuristic

FDMINQ is identical to DMINQ except that, instead of using a fixed threshold mechanism

based on the number of processes in a processor, it uses a filtering mechanism based on predic-

tion. Predicted resource requirements are used to identify and filter out small processes (i.e.,

2 A similar threshold mechanism is used by DISTED [Zhou 86]. In addition, DISTED also filters processes based on their

name. Studies by Zhou show thatcertainprocesses are typicallylargewhile othersare usuallysmall and thatprocess names can bc

used to distinguish between them. Due to a lack of implamentation detail in [Zhou 86], this feature was not implemented for the

DISTED heuristic used in this paper.

Page 10

processes requiring little CPU time). Thus, regardless of the load on the processor, all small

processes are executed locally. As will be seen, this reduces the burden on the scheduler and

significantly improves the response times for small processes.

4.0 Experiment Design

4.1 The System

The load-sharing heuristics were tested on a simulated distributed system consisting of

homogeneous processors that are connected by a single communication channel. Each proces-

sor is assumed to have infinite memory and use a pre-emptive round robin CPU scheduling dis-

cipline with a 100 millisecond time-slice. Process scheduling and message transfer have prior-

ity over process execution. A distributed file system is assumed so that the cost of accessing

files is roughly the same for all hosts. This model is representative of a typical Ethemet-based

distributed environment 3.

Only the CPU overhead of sending and receiving status update messages by the load-

sharing heuristic is modeled. Thus, the I/O overhead and the message traffic produced by the

application processes and by the load-sharing heuristics are not modeled. This assumption gives

us conservative results. As indicated by the measurements in section 5.1, consideration of the

impact of message traffic will only further enhance our results. Twenty milliseconds of CPU

time is assumed to be needed to send a status message and 10 milliseconds is needed to receive

and process a status update message. A cost of 100 milliseconds of CPU time is incurred by a

processor when a process is transferred to it. These estimates, for the type of system studied,

3 It should be emphasized that the proposed heuristics can be adapted to the specifics of a given topology.

Page 11

were obtained from [Zhou 86]. Our measurements show that it takes approximately 5 mil-

liseconds of CPU time to make a prediction. This cost was also included in the simulations.

4.2 Input Trace File

An actual trace file of 37,000 processes, executed on a VAX 11/780 running 4.3BSD

Unix, was used as input to the simulated system. Each process in the trace file was defined by

its identification number, its arrival time, its CPU, I/O, and memory requirements. Since the

trace file contains logical I/O performed by a process, a file cache with a hit ratio of 75% was

modeled. A file cache access time of 0.2 milliseconds and a cache miss time of 70 milliseconds

was assumed. The process arrival rate was varied to observe the system under various loads. In

simulating the distributed heuristics, processes were read from the trace file and randomly sent

to the processors. Fifteen thousand processes were input to the system for each experiment.

5.0 Experiment Results and Discussion

Experiments were conducted to investigate system sizes varying from 6 to 25 nodes.

Since the basic findings were similar, only results

Table 1. Process Arrival Rates for each Load

Load

1

2

3

4

5

6

Arrival Rate (processes/sec)
2.8

3.6

4.7

5.7

7.1

8.1

of experiments conducted on a 20 node system are presented in this paper. The performance

metric used to judge the load-sharing policies was the mean response time of the processes. All

Page 12

the heuristics were simulated using various parameters (e.g., status update interval, threshold

value) and only the best response times attained are shown in Table 1.

The range of loads under which the heuristics were executed axe also shown in Table 1.

5.1 Comparison of Centralized Heuristics

5.1.1 Comparison of MINQ, SMPL and CENTEX

Typically, random assignment is used as a reference against which new heuristics are com-

pared. Figure 3 shows a comparison of MINQ against RND which randomly assigns a process

to a processor. It is clear that MINQ yields substantial performance gains over RND at all loads

tested.

Mean Response
time in sec.

5 B

20-

15-

10-

5-

0

•o

&•

#

°•

°°

°•

•,

°•••

°.•"

"" /1°

RND

MINQ

I I I I I I
1 2 3 4 5 6

Increasing Load ->

Figure 3. Comparison of MINQ and a random policy

Page13

Figure 4 compares the best response times obtained by MINQ and SMPL, which use pred-

iction, and CENTEX, which does not use prediction. MINQ and SMPL consistently yield better

response times, for all range of loads, than those produced by CENTEX. The response times of

SMPL are as much as 30% lower than CENTEX. On the average, SMPL response times are

21% lower than CENTEX and MINQ response times are about 18% lower.

MINQ and SMPL perform better than CENTEX because they use predicted process

resource requirement information to maintain an accurate running estimate of the processor load.

When a process is to be scheduled, its predicted resource requirements are used to determine the

load that it will place upon a processor. CENTEX, on the other hand, has no process specific

Mean Response
time in sec.

m

8-

7-

6-

5-

4-

3-

o" I

..'" i' I

"'° J7

.'" S

.,° •

..Jl ° I S

...'°" S S

.°°°° _° "''y

CENTEX

MINQ
SMPL

I I I I I I
1 2 3 4 5 6

Increasing Load ->

Figure 4. Comparison of MINQ, SMPL & CENTEX

Page 14

information and hence has no a priori knowledge of the load imposed by a process. In order to

estimate the load, CENTEX keeps a running account of the CPU queue length at each processor

and, adds a constant (typically a 1) to the processor's queue length each time a process is sent to

it.

Figure 4 also shows that SMPL performs only slightly better than MINQ. The advantage

of SMPL, as shown in the next subsection, is that its performance is less sensitive to the status

update interval than that of MINQ.

5.1.2 Impact of Varying Status Update Intervals

9

8

7

Mean Response 6
time in sect

5

4

3

MINQ at 12 sec.
MINQ at 6 sec.

/','_ SMPL at 12 sec.

II_ IIII.

S S

s_ S ,o'

ss JS.js j_

I I 1 I I I
1 2 3 4 5 6

Increasing Load ->

Figure 5a. MINQ and SMPL using various status update rates

Page15

A load-sharing heuristic which requires frequent status updates can significantly increase

the CPU time needed for message processing. In addition, it can substantially contribute to the

message traffic in the system. Prediction makes it possible to lower these overheads because it

allows MINQ and SMPL to maintain their performance while using fewer status update rates.

Figure 5a compares SMPL and MINQ with-respect tO status update periods. The figure

shows the response times for SMPL with a 12 second update interval and compares it with

MINQ with 6 and 12 second update intervals. It is clear that SMPL performs just as well as

MINQ while using a status update interval that's twice as slow. The reason is because SMPL

explicitly tries to predict the response time as opposed to MINQ, which simply predicts the load

Mean Response
time in sec.

n

8-

7-

6-

5-

4-

3-

,_ CENTEX at 12 sec.
I

I

• CENTEX (3 sec. best)
I

_i/ SMPL at 12 sec.

i • .°

iiii _ "'"

s S .0 /

°°"

_" °,°

s °,./

s S_S .a'"

• .°°
s °."

s S 11"

I I I I I I
1 2 3 4 5 6

Increasing Load ->

Figure 5b. SMPL using a four time slower update rate than CENTEX

Page 16

at a processor. As seen in Figure 4, for very short intervals, the difference between the two

heuristics becomes insignificant because the disadvantage of MINQ's coarse prediction is offset

by the frequent update of status information.

Figure 5b compares the response times of SMPL (with a 12 second update interval) and

CENTEX (with a 3 and a 12 second update interval) 4. Even with an update interval which is

four times as large, SMPL achieves response times that are up to 10% lower than that of CEN-

TEX. As mentioned in the previous subsection, CENTEX does not sustain its performance

when using large intervals because it lacks process specific information. SMPL used

Mean Response
time in sec.

12-

11-

10-

9-

8-

7-

6-

5-

4-

3-

DISTED

.y... : DMINQ

..: _, FDMINQ
• J

.° • I

• •jr

.'° s

I I I I I I
1 2 3 4 5 6

Increasing Load ->

Figure 6. Comparison of DMINQ, DISTED (with T=2) & FDMINQ

4CENTEX achieves its best response free when using a 3 second update interval.

Page 17

approximately 70% fewer status update messages than that used by CENTEX executed with a 3

second interval. Recall that only the CPU overhead of sending and receiving messages was

modeled. Clearly, if the impact of message traffic was taken into account the results for SMPL

would only improve more. This may be important since a recent study [Wallace 89] shows that

an Ethernet channel in a distributed system can have sustained utilization of 50% or higher. In

such an environment it is advantageous to have a heuristic that can perform well while imposing

less message traffic on the system.

5.2 Comparison of the Distributed Heuristics

Figure 6 compares the response times of DISTED and DMINQ both of which use a thres-

hold mechanism in making scheduling decisions. A threshold T equal to 2 was used in the

experiment. This value was chosen because it produced the best response times for both heuris-

tics. At low loads, both heuristics perform equally well since most of the processes are pro-

cessed locally. However, as the load increases resulting in more processes being scheduled

remotely, DMINQ out performs DISTED by up to 18%.

Figure 6 also contains the response time curve for FDMINQ. Recall that FDMINQ uses a

filtering scheme to identify and execute small processes locally. Here, all processes with a

predicted CPU time of less than 2 seconds were filtered. FDMINQ's response time was up to

51% (average 21%) lower than that of DISTED and up to 33% (average 17%) lower than that of

DMINQ. Since the only difference between FDMINQ and DMINQ is the filtering mechanism,

it is clear that explicit filtering of small processes is the reason for the improved response times.

Figure 7 shows the response time of only those processes that required less than half a

second of CPU time. As a result of filtering, these processes execute up to three or four times

faster at high loads than when DMINQ or DISTED is used. In addition, the variance in the

Page 18

Mean Response
time in sec.

m

3.5-

3-

2.5-

2-

1.5-

1-

0.5-

0

/
I

I

I °

I o°

I •
I

I

t "

I .°

I °"

I .°

• o°

• oO

• o°

s" °°

• J o°

s ,.'

_ss ..

s ,_."

, DISTED
/

.: DMINQ
o.

°

°o

FDMINQ

I I I I I I
1 2 3 4 5 6

Increasing Load

Figure 7. Response times of the small processes (< 0.5 CPU sec)

Page 19

20

15

Variance 10

5

0

: DMINQ

DISTED

FDMINQ

F:--- t T-- t I I
1 2 3 4 5 6

Increasing Load

Figure 8, Variance In the response times of small process (< 0.5 CPU time)

response times of these processes is also reduced (Figure 8). It's especially important to main-

tain consistently low response times for small processes because even slight increases in their

response times are noticeable to the user. The filtering scheme affects a large segment of the

process population; 67% of the processes in the trace file require less than half a second of CPU

time.

The threshold mechanism executes processes locally when a processor's load is below a

threshold, T. As a result, it becomes ineffective if the processor's load is consistently higher

than T. Figure 9 illustrates this behavior. However, the filtering mechanism always filters the

same number of processes, regardless of the load. This is important because as the system load

increases it becomes more efficient to execute processes locally. For this reason FDMINQ per-

Page 20

Percent

100-

90-

80-

70-

60-

50-

40-

30-

20-

10-

0

* -- - '-.._.---- FDMINQ (filter)

"°,.°

',e.

DMINQ (threshold)

DISTED (threshold)

I I I I I I
1 2 3 4 5 6

Increasing Load

Figure 9. Percent of processes housed locally

forms better than DISTED and DMINQ with rising load (see Figures 6 and 7).

6.0 Conclusion

This paper has proposed new heuristics for load-sharing which use predicted information

on process resource usage to make scheduling decisions. Four heuristics were presented. The

first two, MINQ and SMPL, are centralized heuristics and the remaining two, DMINQ and

FDMINQ, are distributed heuristics. These heuristics were first compared against random

scheduling and then against two conventional heuristics, CENTEX and DISTED, which

schedule processes solely based on system state information.

Page 21

Results based on trace-driven simulations showed that the proposed centralized heuristics

offer improved mean response times and are less dependent on the status update rate (the rate at

which status information is collected). The simulations revealed that MINQ and SMPL perform

as well or better than CENTEX while using up to 70% fewer status update messages. The use

of fewer status update messages imposes less overhead on the system. In experiments where an

equal number of status update messages were used, SMPL response times were up to 30%

(average 22%) lower than those produced by CENTEX and, MINQ response times were on the

average 18% lower. The use of prediction for distributed scheduling produced similar results.

Under moderate to high loads, the response times for DMINQ were 18% lower than those of

DISTED. When prediction was used to filter small processes and execute them locally a 50%

improvement in response times was obtained.

Further study includes using prediction for a class of distributed heuristics that use probing

such as the Shortest heuristic proposed in [Eager 86] and investigating the usefulness of predic-

tion in real-time scheduling.

7.0 Acknowledgments

This work was supported by the National Aeronautics and Space Administration under NASA

grant NAG-l-613. The authors would like to thank Murthy Devarakonda for his useful com-

ments and suggestions. Particular thanks are due to In-hwan Lee and Bob Dimpsey for many

helpful discussions.

8.0 References

Page22

[Barak85]
A. Barak and A. Shiloh, "A Distributed Load Balancing Policy for a Multicomputer,"

Software - Practice and Experience, Vol. 15, September 1985.

[Casavant 88]

T. Casavant and J. Kuhl, "A Taxonomy of Scheduling in General-Purpose Distributed

Computing Systems," IEEE Trans. on Software Eng., Vol. 14, No. 2, February 1988.

[Devarakonda 89]

M. Devarakonda and R. K. Iyer, "Predictability of Process Resource Usage: A

Measurement-Based Study of UNIX," IEEE Tran. on Software Eng., Vol. 15, No. 12,
December 1989.

[Eager 86]

D. Eager, E. Lazowska, and J. Zahorjan, "A Dynamic Load Sharing in Homogeneous Dis-

tributed Systems," IEEE Trans. on Software Eng., SE-12, 5, May 1986, pp. 662-675.

[Goswami 89]

K. Goswami, R. Iyer, and M. Devarakonda, "Load Sharing Based on Task Resource Pred-

iction," Proceedings 22nd Annual Hawaii International Conference on System Sciences,

Volume 2, January 1989, pg. 921-927.

[Hwang 82]

K. Hwang, W. Croft, G. Goble, B. Wall, F. Briggs, W. Simmons and C. Coates, "A

UNIX-Based Local Computer Network with Load Balancing," IEEE Computer, Vol. 15, 4,

April 1982.

[Krueger 84]

P. Krueger and R. Finkel, "An Adaptive Load Balancing Algorithm For a Multicomputer,"

University Of Wisconsin, Technical Report #539, April 1984.

[Lazowska 84]

E. Lazowska, J. Zahorjan, D. Cheriton, and W. Zwaenepoel, "File Access Performance of

Diskless Workstations," University of Washington, Technical Report 840-06-01, June
1984.

[Leland 86]

W. Leland and T. Ott, "Load Balancing Heuristics and Process Behavior," ACM, Sep-
tember 1986.

[Livny 83]

M. Livny, "The Study of Load Balancing Algorithms for Decentralized Distributed Pro-

cessing Systems," Ph.D. Thesis, Weizmann Institute of Science, August 1983.

Page 23

[Ni 82]
M. L. Ni, "A Distributed Load Balancing Algorithm for Point-to-Point Local Computer

Networks," Proceedings of CompCon, Computer Networks, Sept. 1983, pp. 116-123.

[Powell 83]
M. L. PoweU and B. P. Miller, "Process Migration in DEMOS/MP", Operating System

Review, Vol. 17, No. 5, 1983.

[Schwetman 86]
H. Schwetman, "CSIM: A C-Based, Process-Oriented Simulation Language," Proceedings

Winter Simulation Conference, 1986

[Stankovic 85]
J. Stankovic, "Stability and Distributed Scheduling Algorithms," IEEE Trans. on Software

Eng., Vol. SE-11, No. 10, October 1985.

[Wallace 89]
R. B. Wallace and S. Zhou, "Network Performance in a Workstation Environment,"

Proceedings 22nd Annual Hawaii International Conference on System Sciences, Volume

2, January 1989, pp. 914-920.

[Wang 85]
Y. Wang and R. Morris, "Load Sharing in Distributed Systems," IEEE Trans. on Comput-
ers, Vol. C-34, No. 3, March 1985.

[Zhao 87]
W. Zhao, K. Ramamritham and J. A. Stankovic, "Scheduling tasks with Resource Require-

ments in Hard Real-Time Systems", IEEE Trans. on Sofware Eng., Vol. SE-13, No. 5,

May 1987.

[Zhou 86]
S. Zhou, "A Trace-Driven Simulation Study of Dynamic Load Balancing," University of

Cal. Berkeley, Technical Report #UCB/CSD 87/305, September 1986.

[Zhou 86b]

S. Zhou, "An Experimental Assessment of Resource Queue Length as Load Indices,"

University of Cal. Berkeley, Technical Report # UCB/CSD 86/298, April 1986.

